Local Resilience and Hamiltonicity Maker-Breaker Games in Random Regular Graphs

نویسندگان

  • Sonny Ben-Shimon
  • Michael Krivelevich
  • Benny Sudakov
چکیده

For an increasing monotone graph property P the local resilience of a graph G with respect to P is the minimal r for which there exists a subgraph H ⊆ G with all degrees at most r, such that the removal of the edges of H from G creates a graph that does not possess P . This notion, which was implicitly studied for some ad hoc properties, was recently treated in a more systematic way in a paper by Sudakov and Vu. Most research conducted with respect to this distance notion focused on the binomial random graph model G(n, p) and some families of pseudo-random graphs with respect to several graph properties, such as containing a perfect matching and being Hamiltonian, to name a few. In this paper we continue to explore the local resilience notion, but turn our attention to random and pseudo-random regular graphs of constant degree. We investigate the local resilience of the typical random d-regular graph with respect to edge and vertex connectivity, containing a perfect matching, and being Hamiltonian. In particular, we prove that for every positive ε and large enough values of d, with high probability, the local resilience of the random d-regular graph, Gn,d, with respect to being Hamiltonian, is at least (1− ε)d/6. We also prove that for the binomial random graph model G(n, p), for every positive ε > 0 and large enough values of K , if p > K ln n n then, with high probability, the local resilience of G(n, p) with respect to being Hamiltonian is at least (1− ε)np/6. Finally, we apply similar techniques to positional games, and prove that if d is large enough then, with high probability, a typical

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating random graphs in biased Maker-Breaker games

We present a general approach connecting biased Maker-Breaker games and problems about local resilience in random graphs. We utilize this approach to prove new results and also to derive some known results about biased Maker-Breaker games. In particular, we show that for b = Θ( n lnn), playing a (1 : b) game on E(Kn), Maker can build a graph which contains copies of all spanning trees having ma...

متن کامل

Hamiltonian Maker-Breaker games on small graphs

We look at the unbiased Maker-Breaker Hamiltonicity game played on the edge set of a complete graph Kn, where Maker’s goal is to claim a Hamiltonian cycle. First, we prove that, independent of who starts, Maker can win the game for n = 8 and n = 9. Then we use an inductive argument to show that, independent of who starts, Maker can win the game if and only if n ≥ 8. This, in particular, resolve...

متن کامل

Sharp Thresholds for Half-Random Games II

We study biased Maker-Breaker positional games between two players, one of whom is playing randomly against an opponent with an optimal strategy. In this work we focus on the case of Breaker playing randomly and Maker being “clever”. The reverse scenario is treated in a separate paper. We determine the sharp threshold bias of classical games played on the edge set of the complete graph Kn, such...

متن کامل

Fast Strategies In Maker-Breaker Games Played on Random Boards

In this paper we analyze classical Maker-Breaker games played on the edge set of a sparse random board G ∼ Gn,p. We consider the Hamiltonicity game, the perfect matching game and the k-connectivity game. We prove that for p(n) ≥ polylog(n)/n, the board G ∼ Gn,p is typically such that Maker can win these games asymptotically as fast as possible, i.e. within n+ o(n), n/2 + o(n) and kn/2 + o(n) mo...

متن کامل

On unbiased games on random graphs

We study unbiased Maker-Breaker positional games played on the edges of the random graph G(n, p). As the main result of the paper, we prove a conjecture from [18], that the property that Maker is able to win the Hamiltonicity game played on a random graph G(n, p) has a sharp threshold at log n n . Our theorem can be considered a game-theoretic strengthening of classical results from the theory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2011